Homomorphism in Weakly Γ-Ring

Orgest Beqiri

Department of Mathematics,
Faculty of Information Technology,
University ‘Aleksandër Moisiu’,
Durrës, Albania

Received: 05 May 2022 / Accepted: 10 June 2023 / Published: 23 July 2023
© 2023 Orgest Beqiri

Doi: 10.56345/ijrdv10n211

Abstract

Many algebraic structures have been defined so far. One of them, is that of Γ-ring, which is a generalization of ring. Weakening some of the conditions of the definition of Γ-ring, it has also been defined the concept of weakly Γ-ring. An important and well-known concept for every algebraic structure is homomorphism. In this paper, the concept of homomorphism in weakly Γ-ring is introduced. Further, some simple results analogous to the theory of rings, related to this concept are extended.

Keywords: Γ-semigroup, Γ-ring, weakly Γ-ring, homomorphism

1. Introduction

The concept of Γ-ring, which is a generalization of the concept of ring, was first defined by Nobusawa in [1].

Barnes, in [2], weakened some of the conditions of the definition of Nobusawa, and defined those that he called Γ-rings, naming Γ-rings defined in [1], as Γ-rings of Nobusawa.

Based to the definition of Nobusawa’s Γ-ring, Sen in [3], defined Γ-semigroup that is called Γ-semigroup of Sen. Sen and Saha in [4], defined a generalization of Γ-semigroup of Sen, which is called a Γ-semigroup. The concept of Γ-semigroup may be obtained by that of Γ-ring, by extracting addition.

Petro and Sema, in [5], weakened further the conditions of the definition of Barnes and defined those that they called weakly Γ-rings.

An important concept for every algebraic structure is homomorphism. Thus, it is eligible extending this concept to weakly Γ-rings.

In this paper, homomorphism to weakly Γ-rings is introduced and some simple results of rings to Γ-rings, which are related to this concept, are extended.

2. Materials and Methods

Here we give some notions and present some auxiliary results that will be used throughout the paper.

Let M and Γ be two nonempty sets. Any map from $M \times \Gamma \times M$ to M is called a Γ-multiplication on M and is denoted by $(\cdot)_{\Gamma}$. The result of this Γ-multiplication for each $a, b \in M$ and each $\gamma \in \Gamma$, is denoted by $a\gamma b$.

The concept of Γ-ring, which is a generalization of the concept of ring, was first defined by Nobusawa in [1], as follows:
Definition 2.1. [1] Let M be an additive group with elements a, b, c, \ldots and Γ another additive group with elements $\alpha, \beta, \gamma, \ldots$. Assume that $a \alpha b$ is defined as an element of M and $\alpha \alpha b$ is defined as an element of Γ for each a, b, α and β. If the products satisfy the following conditions:

1. $(a_1 + a_2) \alpha b = a_1 \alpha b + a_2 \alpha b$, $a \alpha (b_1 + b_2) = a \alpha b_1 + a \alpha b_2$,
2. $(a_1 + a_2) \alpha b = a_1 \alpha b + a_2 \alpha b$.

Then M is called a Γ-ring.

An ordinary ring $(A, +, \cdot)$ may turn into a Γ-ring, if we get M and Γ to be equal to A.

Barnes, in [2], weakened some of the conditions of Nobusawa, by calling Γ-rings of Nobusawa the ones defined as above and simply Γ-rings those that he defined himself.

Definition 2.2. [2] Every ordered five-tuple $(M, \Gamma, +, \oplus, \cdot)$, where M, Γ are sets, $+$ is an addition on M, \oplus addition on Γ, \cdot is a Γ-multiplication on M, such that:

1. $(M, +)$ is an abelian group.
2. (Γ, \oplus) is an abelian group.
3. $\forall (a, b, c, \alpha, \beta) \in M \times \Gamma$, $(a \alpha b) \oplus c = a \alpha (b \oplus c) \alpha c$.
4. $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
5. $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
6. $\forall (a, b, \alpha, \beta) \in M \times \Gamma$, $a \alpha (b \oplus \beta) = a \alpha b + a \alpha \beta$, is called Γ-ring (of Barnes).

Sen and Saha in [4], defined Γ-semigroups, which may be obtained by the definition of Γ-rings, by avoiding the additions:

Definition 2.3. [4] Every ordered pair (M, \cdot), where M and Γ are two nonempty sets and \cdot is a Γ-multiplication on M, such that:

1. $(M, +)$ is an abelian group.
2. (Γ, \oplus) is an abelian group.
3. $\forall (a, b, c, \alpha, \beta) \in M \times \Gamma$, $(a \alpha b) \oplus c = a \alpha (b \oplus c) \alpha c$.
4. $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
5. $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
6. $\forall (a, b, \alpha, \beta) \in M \times \Gamma$, $a \alpha (b \oplus \beta) = a \alpha b + a \alpha \beta$, is called Γ-ring (of Barnes).

Petro and Sema in [5], weakened further the conditions of the definition of Γ-rings (of Barnes), by defining weakly Γ-rings, as follows:

Definition 2.4. [5] Every ordered triple $(M, +, \cdot)$, where M and Γ are two nonempty sets, $+$ is an addition on M, and \cdot is a Γ-multiplication on M, such that:

1) $(M, +)$ is an abelian group.
2) (Γ, \oplus) is an abelian group.
3) $\forall (a, b, c, \alpha, \beta) \in M \times \Gamma$, $(a \alpha b) \oplus c = a \alpha (b \oplus c) \alpha c$.
4) $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
5) $\forall (a, b, c, \gamma) \in M \times \Gamma$, $a \gamma (b + c) = a \gamma b + a \gamma c$.
6) $\forall (a, b, \alpha, \beta) \in M \times \Gamma$, $a \alpha (b \oplus \beta) = a \alpha b + a \alpha \beta$, is called weakly Γ-ring.

We notice that plain rings, Γ-rings of Nobusawa and Γ-rings of Barnes, are weakly Γ-rings, but the converse is not true.

Saha and Seth in [6] have introduced the concept of homomorphism between two Γ-semigroups, as follows:

Definition 2.5. [6] Let (M, \cdot) be a Γ-semigroup and (M, \cdot) be a Γ_1-semigroup. A pair of mappings (h_1, h_2), where $h_1: M \to M$, $h_2: B \to B$, such that $h_1(a \cdot b) = h_1(a) h_2(b)$, called a homomorphism of (M, \cdot) to (M, \cdot).

Let $(M, +, \cdot)$ be a weakly Γ-ring. Every nonempty subset T of M, such that $(T, +)$ is a subgroup of $(M, +)$ and $a \cdot b \in T$, for each $(a, b) \in T$ and $\gamma \in \Gamma$, is called subΓ-ring of M.

Let M be a weakly Γ-ring and A, B two nonempty subsets of M. Define:

$\Gamma^T = \{ \sum_{i=1}^n a_i \gamma_i b_i : a_i \in A, b_i \in B, \gamma_i \in \Gamma \}$ for each $i = 1, 2, \ldots, n; n \in \mathbb{N}$.

Every subgroup $R[L]$ of the group $(M, +)$, such that:

$R \Gamma^M \subseteq R \subseteq \mathbb{L}$,

is called right [left] ideal of the weakly Γ-ring $(M, +, \cdot)$. Every subgroup I of the group $(M, +)$, such that:

$\Gamma^I \subseteq \mathbb{L}$,

is called right [left] ideal of the weakly Γ-ring $(M, +, \cdot)$.
is called ideal of the weakly $Γ$-ring $(M, +, (\cdot)_r)$.

Thus, I is an ideal of the weakly $Γ$-ring M, only if it is a left ideal and a right ideal of M simultaneously.

3. Conclusions

In this section, basing on what is given above, mixing them, some new results are given.

Definition 3.1. Let $(M, +, (\cdot)_r)$ be a weakly $Γ$-ring and $(M', +, (\cdot)_{r'})$ be a weakly $Γ'$-ring. Every ordered pair of mappings $H = (h_1, h_2)$, where $h_1 : M \to M'$ and $h_2 : Γ \to Γ'$, such that:

1) \[∀(a, b) ∈ M^2, h_1(a + b) = h_1(a) + h_1(b). \]
2) \[∀(a, α, b) ∈ M × Γ × M, h_1(αab) = h_1(α)h_2(α)h_1(b), \]

is called a homomorphism of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$.

It is obvious that every homomorphism of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$, is an ordered pair of mappings (h_1, h_2), where h_1 is a homomorphism of the additive group $(M, +)$ of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the additive group $(M', +)$ of the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$, whereas h_2 is a homomorphism of the $Γ$-semigroup $(M, (\cdot)_r)$ to the $Γ'$-semigroup $(M', (\cdot)_{r'})$ of the $Γ'$-multiplication of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the $Γ'$-ring $(M', +, (\cdot)_{r'})$.

If both mappings h_1, h_2 are injective (one-to-one), the homomorphism $H = (h_1, h_2)$ is called monomorphism and $(M, Γ)$ is called monomorph to $(M', Γ')$. If these mappings are both surjective (onto), H is called epimorphism and $(M, Γ)$ is called epiomorph to $(M', Γ')$.

Definition 3.2. Let $H = (h_1, h_2)$ be a homomorphism of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$. The kernel of the homomorphism h_1 of the additive group $(M, +)$ to the additive group $(M', +)$, is called kernel of the homomorphism H and will be denoted by $KerH$. Thus:

\[KerH = \{ x ∈ M : h_1(x) = 0_M \}. \]

The kernel of the homomorphism h_1, is called image of the homomorphism $H = (h_1, h_2)$, and will be denoted by ImH. Thus:

\[ImH = \{ h_1(x) ∈ M' : x ∈ M \} = \{ x' ∈ M' : ∃ x ∈ M, h_1(x) = x' \}. \]

Proposition 3.3. For every homomorphism $H = (h_1, h_2)$ of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$, the kernel $KerH$ is an ideal of the weakly $Γ$-ring $(M, +, (\cdot)_r)$, whereas, when h_2 is a surjective mapping, ImH is a sub-$Γ'$-ring of the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$.

Proof. $KerH$ is a subgroup of the additive group of the weakly $Γ$-ring $(M, +, (\cdot)_r)$. For each element $α$ of M, for each element b of $KerH$ and for each element $γ$ of $Γ'$, the following hold:

\[h_1(αb) = h_1(α)h_2(γ)h_1(b) = 0h_2(γ)h_1(b) = 0, \]
\[h_1(bαa) = h_1(b)h_2(γ)h_1(α) = h_1(b)h_2(γ)0 = 0, \]

which show that $KerH$ is an ideal of the weakly $Γ$-ring $(M, +, (\cdot)_r)$.

Let a', b' be two elements of ImH and $γ'$ an arbitrary element of $Γ'$. Then, there exist the elements $a, b ∈ M$ and the element $γ ∈ Γ$, such that:

\[a' = h_1(a), b' = h_1(b), γ' = h_2(γ). \]

The following equalities hold:

\[a'γ'b' = h_1(a)h_2(γ)h_1(b) = h_1(αyb), \]

which show that ImH is a sub-$Γ'$-ring of the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$, since ImH is a subgroup of the group $(M', +)$.

Let $H = (h_1, h_2)$ be a homomorphism of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$, and B' a subset of M'. Denote

\[H^{-1}(B') = \{ x ∈ M : h_1(x) ∈ B' \}. \]

The subset $H^{-1}(B')$ of M, will be called inverse image of B'.

Proposition 3.4. Let $H = (h_1, h_2)$ be an epimorphism of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ to the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$ with kernel, the ideal I of $(M, +, (\cdot)_r)$. Then, a nonempty subset B' of M' is an ideal of $(M', +, (\cdot)_{r'})$ if and only if

\[H^{-1}(B') = B \]

is an ideal of the weakly $Γ$-ring $(M, +, (\cdot)_r)$ that contains the ideal I.

Proof. Assume that the nonempty subset B' of M' is an ideal of the weakly $Γ'$-ring $(M', +, (\cdot)_{r'})$. Let $α$ be an
ordinary element of M, b an ordinary element of $B = H^{-1}(B')$ and γ an ordinary element of Γ. Since:

$$h_1(ab) = h_1(a)h_2(b)h_3(b) \in M'\cap B' \subseteq B',$$
$$h_2(ba) = h_1(b)h_2(\gamma)h_3(a) \in B'\cap M' \subseteq B',$$

the elements $ab\gamma, b\gamma a$ belong to the subset B and consequently $H^{-1}(B') = B$ is an ideal of the weakly Γ-ring $(M, +, (\cdot)_{\Gamma})$, since $H^{-1}(B')$ is a subgroup of the additive group $(M, +)$ of the weakly Γ-ring $(M, +, (\cdot)_{\Gamma})$.

The ideal $H^{-1}(B') = B$ contains the ideal I of the epimorphism H; since we have

$$\forall x \in M, x \in I \Rightarrow h_2(x) = 0 \in B'.$$

Conversely, suppose that $H^{-1}(B') = B$ is an ideal of the weakly Γ-ring $(M, +, (\cdot)_{\Gamma})$, that contains the ideal I.

Let α' be an element of M', b' an element of B' and γ' an element of Γ'. There exist the elements $a \in M, b \in H^{-1}(B') = B$ and $\gamma \in \Gamma$, such that:

$$a' = h_1(a), \quad b' = h_1(b), \quad \gamma' = h_2(\gamma).$$

The following equalities hold:

$$a' - b' = h_1(a) - h_1(b) = h_1(a - b),$$
$$a'\gamma'b' = h_1(a)h_2(\gamma)h_3(b) = h_2(ab),$$
$$b'\gamma'a' = h_1(b)h_2(\gamma)h_3(a) = h_2(b\gamma a),$$

that show that B' is an ideal of the weakly Γ'-ring $(M', +, (\cdot)_{\Gamma'})$, since $B' \neq \emptyset$, because $I \subseteq H^{-1}(B') = B$, and $H^{-1}(B') = B$ is an ideal of $(M, +, (\cdot)_{\Gamma})$, that guarantees us that $a-b, ab, b\gamma a$ are elements of $H^{-1}(B') = B$. ■

References